This article was downloaded by: [University of California, San Diego]

On: 11 August 2012, At: 10:35 Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,

UK



# Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information: <a href="http://www.tandfonline.com/loi/gmcl20">http://www.tandfonline.com/loi/gmcl20</a>

# Polarisability Tensor of CB 5 Molecule and Light Wavelength

PrzemysŁaw Adamski <sup>a</sup> & Alexej Bubnov <sup>b</sup>

<sup>a</sup> Institute of Physics, Technical University of Łódź, Łódź, Poland

b Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic

Version of record first published: 18 Oct 2010

To cite this article: PrzemysŁaw Adamski & Alexej Bubnov (2004): Polarisability Tensor of CB 5 Molecule and Light Wavelength, Molecular Crystals and Liquid Crystals, 409:1, 145-152

To link to this article: <a href="http://dx.doi.org/10.1080/15421400490431075">http://dx.doi.org/10.1080/15421400490431075</a>

#### PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <a href="http://www.tandfonline.com/page/terms-and-conditions">http://www.tandfonline.com/page/terms-and-conditions</a>

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages

whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Mol. Cryst. Liq. Cryst., Vol. 409, pp. 145-152, 2004

Copyright © Taylor & Francis Inc. ISSN: 1542-1406 print/1563-5287 online DOI: 10.1080/15421400490431075



## POLARISABILITY TENSOR OF CB 5 MOLECULE AND LIGHT WAVELENGTH

PrzemysŁaw Adamski Institute of Physics Technical University of Łódź, Wólczañska 219, 93-005 Łódź, Poland

Alexej Bubnov\*
Institute of Physics, Academy of Sciences of the Czech Republic,
Na Slovance 2, 182 21 Prague, Czech Republic

The influence of the wavelength of light on the values of polarisability tensor components  $\alpha_{\parallel}$ ,  $\alpha_{\perp}$ , polarisability anisotropy  $(\alpha_{\parallel} - \alpha_{\perp})$  and the order parameter S of liquid crystal molecules was verified. The refractive indices are functions of temperature and light wavelength. The values  $\alpha_{\parallel}$  and  $\alpha_{\perp}$  of a liquid crystal molecule can be calculated from refractive indices, density, and coefficient in the Valentova equation. Here, it was found that there is a relation between the wavelengths of the light and values of  $(\alpha_{\parallel} - \alpha_{\perp})$  and  $\alpha_{\parallel}$ ,  $\alpha_{\perp}$  of CB 5 molecule. The values of the order parameter S obtained for CB 5 liquid crystal are identical for all wavelengths of light.

Keywords: liquid crystals; order parameter; polarisability tensor; polarisability anisotropy of molecule; wavelength of light

#### 1. INTRODUCTION

Birefringence properties of liquid crystals are characterised by two polarisability tensors. The first is the polarisability tensor of a liquid crystal sample, described by the components  $\alpha_1$  and  $\alpha_2$ . These components can be calculated from the refractive indices by using the equations proposed recently [1–4], or by using Lorenz-Lorentz', Vuks' and Neugebauer's equations [5]. The second polarisability tensor, with components  $\alpha_{\parallel}$  and  $\alpha_{\perp}$ , is connected with the liquid crystal molecule. In 1961, Saupe and Maier used  $\alpha_{\parallel}$  and  $\alpha_{\perp}$  in their theory of orientational order of liquid crystal molecules

This work was partly supported by Grant No. 202/00/ P044 and No. 202/00/11/98/ from the Grant Agency of the Czech Republic.

\*Corresponding author. E-mail: bubnov@fzu.cz

[6]. As a result of the theory, the equations combining  $\alpha_1$  and  $\alpha_2$  with  $\alpha_{\parallel}$ ,  $\alpha_{\perp}$ , and order parameter S of the molecules are:

$$\alpha_1 = \alpha_s/3 + (2/3)(\alpha_{\parallel} - \alpha_{\perp}) \, \mathrm{S}$$

and

$$\alpha_2 = \alpha_s/3 - (1/3)(\alpha_{\parallel} - \alpha_{\perp}) S$$

where  $\alpha_s$  is the trace of polarisability tensor of a liquid crystal molecule. It is well known in the literature [1–4,7–8] that the refractive indices are functions of temperature and wavelength of light. Up to now the relation between polarisability tensor components  $\alpha_{\parallel}$ ,  $\alpha_{\perp}$ , the polarisability anisotropy  $(\alpha_{\parallel} - \alpha_{\perp})$ , and the light wavelengths has not been considered in our investigations. In this article, the influence of the wavelength of light on the values of polarisability tensor components  $\alpha_{\parallel}$ ,  $\alpha_{\perp}$ , polarisability anisotropy  $(\alpha_{\parallel} - \alpha_{\perp})$ , and the order parameter S of liquid crystal molecules is verified.

#### 2. STUDIED COMPOUND AND METHODS USED

The subject of our investigation is the liquid crystalline material p-cyano-p-pentylbiphenyl abbreviated as CB 5. The molecules of this liquid crystal are composed of two benzene rings, CN group and alkyl chain. The benzene rings and CN group are the rigid part of the molecule but the benzene rings can turn around each other due to the existence of a single chemical bond between them. The alkyl chain can change its conformation by the change of the sample temperature. Previous studies of the above mentioned liquid crystal [4,7] don't take into account the dependence of polarisability tensor components on the wavelength of the light. The experimental data for our calculations, namely the refractive indices and density of a CB 5 molecule were taken from Ref. 9 for three wavelengths of the light: 5461 Å, 5893 Å, and 6328 Å. The respective data are collected in Tables 1, 2 and 3. Details of the computations of polarisability anisotropy  $(\alpha_{\parallel} - \alpha_{\perp})$ , polarisability tensor components  $\alpha_{\parallel}$ and  $\alpha_{\perp}$ , and order parameter S of liquid crystal molecules from the refractive indices and density data is described in Refs. 1-4. Basis equations for the calculations are:

$$\begin{split} (\alpha_{\parallel} - \alpha_{\perp}) &= (M/N)[(n_e + n_o)/d\,k_A], \\ \alpha_{\parallel} &= (M/N)[(n^2 - 1)/d + 2(n_e + n_o)/3d\,k_A], \\ \alpha_{\perp} &= (M/N)[(n^2 - 1)/d - (n_e + n_o)/3d\,k_A], \\ S &= k_A(n_e - n_o), \end{split}$$

**TABLE 1** Refractive Indices  $n_e$  and  $n_o$ , Density of the Liquid Crystal d, Polarisability Anisotropy  $(\alpha_{\parallel} - \alpha_{\perp})10^{-23}\,\mathrm{cm}^3$ , Polarisability Tensor Component  $\alpha_{\parallel}10^{-23}\,\mathrm{cm}^3$ , and Order Parameter S of CB 5 for the Wavelength of the Light 5461 Å  $(k_A=3.0992)$ 

| ΔΤ   | d, g/cm <sup>3</sup> | n <sub>o</sub> | $n_{\rm e}$ | $(\alpha_\parallel - \alpha_\perp) 10^{-23}\text{cm}^3$ | $\alpha_\parallel 10^{-23}~\text{cm}^3$ | S     |
|------|----------------------|----------------|-------------|---------------------------------------------------------|-----------------------------------------|-------|
| 14.6 | 1.0266               | 1.536          | 1.739       | 42.62                                                   | 92.17                                   | 0.629 |
| 14.4 | 1.0264               | 1.536          | 1.737       | 42.60                                                   | 92.08                                   | 0.623 |
| 13.1 | 1.0252               | 1.537          | 1.734       | 42.63                                                   | 92.11                                   | 0.611 |
| 12.2 | 1.0244               | 1.538          | 1.733       | 42.66                                                   | 92.22                                   | 0.604 |
| 10.7 | 1.0236               | 1.539          | 1.727       | 42.63                                                   | 92.05                                   | 0.583 |
| 10.3 | 1.0230               | 1.539          | 1.727       | 42.65                                                   | 92.11                                   | 0.583 |
| 8.2  | 1.0206               | 1.540          | 1.721       | 42.69                                                   | 92.08                                   | 0.561 |
| 7.6  | 1.0202               | 1.541          | 1.718       | 42.68                                                   | 92.05                                   | 0.549 |
| 6.0  | 1.0184               | 1.542          | 1.714       | 42.71                                                   | 92.08                                   | 0.533 |
| 5.4  | 1.0179               | 1.542          | 1.712       | 42.71                                                   | 92.02                                   | 0.527 |
| 3.5  | 1.0160               | 1.544          | 1.703       | 42.70                                                   | 91.88                                   | 0.493 |
| 2.8  | 1.0154               | 1.546          | 1.699       | 42.70                                                   | 91.90                                   | 0.474 |
| 1.4  | 1.0315               | 1.550          | 1.689       | 42.70                                                   | 91.89                                   | 0.431 |
| 0.1  | 1.0119               | 1.557          | 1.670       | 42.61                                                   | 91.65                                   | 0.350 |

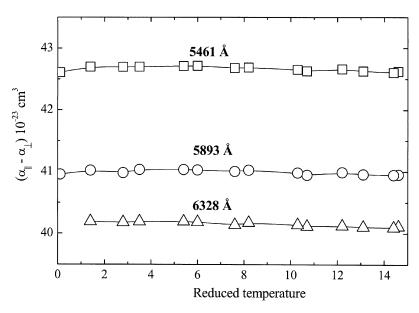
where M is the molecular weight of the molecule, N is the Avogadro number, d is the density of the liquid crystal, n<sub>e</sub> and n<sub>o</sub> are the refractive indices of extraordinary and ordinary light, respectively,

**TABLE 2** Refractive Indices  $n_e$  and  $n_o$ , Density of the Liquid Crystal d, Polarisability Anisotropy  $(\alpha_{\parallel} - \alpha_{\perp})10^{-23}\,\mathrm{cm}^3$ , Polarisability Tensor Component  $\alpha_{\parallel}10^{-23}\,\mathrm{cm}^3$ , and Order Parameter S of CB 5 for the Wavelength of the Light 5893 Å  $(k_A=3.2098)$ 

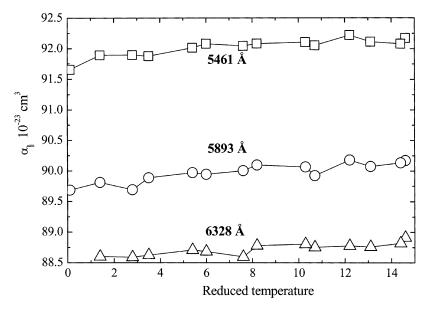
| $\Delta \mathrm{T}$ | $\rm d, g/cm^3$ | $n_{o}$ | $n_{\rm e}$ | $(\alpha_{\parallel}-\alpha_{\perp})10^{-23}cm^3$ | $\alpha_\parallel 10^{-23}~cm^3$ | S     |
|---------------------|-----------------|---------|-------------|---------------------------------------------------|----------------------------------|-------|
| 14.6                | 1.0266          | 1.532   | 1.727       | 40.95                                             | 90.17                            | 0.626 |
| 14.4                | 1.0264          | 1.532   | 1.726       | 40.95                                             | 90.13                            | 0.623 |
| 13.1                | 1.0252          | 1.532   | 1.723       | 40.96                                             | 90.08                            | 0.613 |
| 12.2                | 1.0244          | 1.533   | 1.722       | 40.99                                             | 90.18                            | 0.607 |
| 10.7                | 1.0236          | 1.533   | 1.716       | 40.94                                             | 89.92                            | 0.587 |
| 10.3                | 1.0230          | 1.534   | 1.716       | 40.98                                             | 90.07                            | 0.584 |
| 8.2                 | 1.0206          | 1.535   | 1.711       | 41.03                                             | 90.10                            | 0.565 |
| 7.6                 | 1.0202          | 1.536   | 1.707       | 41.01                                             | 90.01                            | 0.549 |
| 6.0                 | 1.0184          | 1.536   | 1.703       | 41.02                                             | 89.95                            | 0.536 |
| 5.4                 | 1.0179          | 1.537   | 1.701       | 41.03                                             | 89.97                            | 0.526 |
| 3.5                 | 1.0160          | 1.539   | 1.693       | 41.03                                             | 89.89                            | 0.494 |
| 2.8                 | 1.0154          | 1.541   | 1.685       | 40.98                                             | 89.69                            | 0.462 |
| 1.4                 | 1.0315          | 1.544   | 1.679       | 41.02                                             | 89.81                            | 0.433 |
| 0.1                 | 1.0119          | 1.551   | 1.662       | 40.96                                             | 89.68                            | 0.356 |

| <b>TABLE 3</b> Refractive Indices n <sub>e</sub> and n <sub>o</sub> , Density d, Polarisability Anisotropy                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------|
| $(\alpha_{\parallel}-\alpha_{\perp})10^{-23}\mathrm{cm}^3$ , Polarisability Tensor Component $\alpha_{\parallel}10^{-23}\mathrm{cm}^3$ , and Order |
| Parameter S of CB 5 for the Wavelength of the Light $6328 \mathrm{\mathring{A}}  (k_A = 3.2648)$                                                   |

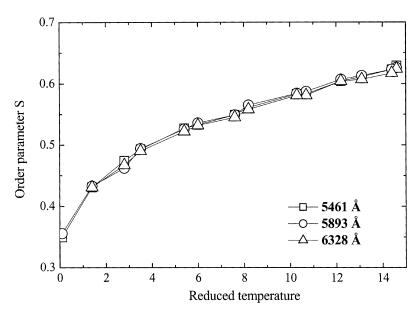
| $\Delta T$ | $d, g/cm^3$ | $n_{o}$ | $n_{\rm e}$ | $(\alpha_{\parallel}-\alpha_{\perp})10^{-23}\text{cm}^3$ | $\alpha_{\parallel}10^{-23}cm^3$ | S     |
|------------|-------------|---------|-------------|----------------------------------------------------------|----------------------------------|-------|
| 14.6       | 1.0266      | 1.528   | 1.719       | 40.11                                                    | 88.91                            | 0.624 |
| 14.4       | 1.0264      | 1.528   | 1.717       | 40.09                                                    | 88.82                            | 0.617 |
| 13.1       | 1.0252      | 1.528   | 1.714       | 40.10                                                    | 88.76                            | 0.607 |
| 12.2       | 1.0244      | 1.528   | 1.713       | 40.12                                                    | 88.78                            | 0.604 |
| 10.7       | 1.0236      | 1.530   | 1.708       | 40.12                                                    | 88.75                            | 0.581 |
| 10.3       | 1.0230      | 1.530   | 1.708       | 40.14                                                    | 88.81                            | 0.581 |
| 8.2        | 1.0206      | 1.531   | 1.702       | 40.17                                                    | 88.78                            | 0.558 |
| 7.6        | 1.0202      | 1.531   | 1.698       | 40.14                                                    | 88.60                            | 0.545 |
| 6          | 1.0184      | 1.532   | 1.695       | 40.18                                                    | 88.68                            | 0.532 |
| 5.4        | 1.0179      | 1.533   | 1.693       | 40.19                                                    | 88.71                            | 0.522 |
| 3.5        | 1.0160      | 1.535   | 1.685       | 40.19                                                    | 88.63                            | 0.490 |
| 2.8        | 1.0154      | 1.537   | 1.68        | 40.18                                                    | 88.59                            | 0.467 |
| 1.4        | 1.0315      | 1.540   | 1.672       | 40.19                                                    | 88.60                            | 0.431 |


 $n^2=(n_e^2+2n_o^2)/3,$  and  $k_A$  is the coefficient in the Valentova equation [10,11].

The quantities  $\alpha_{\parallel},~\alpha_{\perp}$  and  $(\alpha_{\parallel}-\alpha_{\perp})$  for the liquid crystal CB 5 were calculated from the values of its refractive indices, the density d, and the coefficient  $k_A.$  The accuracy in the measurements of  $\Delta n_e$  and  $\Delta n_o$  is  $10^{-3}$  while that of  $\Delta d$  is  $10^{-3}\,\text{g/cm}^3.$  The relative error in the estimation of the polarisability anisotropy  $(\alpha_{\parallel}-\alpha_{\perp})$  calculated from these data is 0.002. Taking a typical value of  $(\alpha_{\parallel}-\alpha_{\perp})$  equal to 40.  $10^{-23}\,\text{cm}^3,$  one obtains  $\Delta(\alpha_{\parallel}-\alpha_{\perp})=0.08.10^{-23}\,\text{cm}^3.$ 


### 3. DISCUSSION

Values of polarisability anisotropy  $(\alpha_{\parallel} - \alpha_{\perp})$  and polarisability tensor component  $\alpha_{\parallel}$  for three wavelengths of light are listed in Tables 1, 2 and 3, respectively. The calculated values of  $(\alpha_{\parallel} - \alpha_{\perp})$  and  $\alpha_{\parallel}$  versus the reduced temperature  $(\Delta T)$  are presented additionally on Figure 1 and Figure 2, respectively. The reduced temperature can be expressed as  $\Delta T = T_o - T$ , where the  $T_o$  is the temperature of the phase transition to the isotropic phase and T is the temperature of the measurement for the mesophase.


The examination of Figure 1 reveals that the value of  $(\alpha_{\parallel} - \alpha_{\perp})$  is practically constant in the entire temperature range of measurements. However, there is a great influence of the wavelength of light on the



**FIGURE 1** Polarisability anisotrophy  $(\alpha_{\parallel} - \alpha_{\perp})10^{-23} \, \text{cm}^3$  of CB 5 molecule as a function of the reduced temperature and the wavelength of the light.



**FIGURE 2** Polarisability tensor component  $\alpha_{\parallel}$   $10^{-23}\,\text{cm}^3$  of a CB 5 molecule as a function of the reduced temperature and the wavelength of the light.



**FIGURE 3** Order parameters S of a CB 5 liquid crystal as a function of the reduced temperature.

 $(\alpha_{\parallel}-\alpha_{\perp})$  values. The change of wavelength for about 867 Å causes the change of polarisability anisotropy  $(\alpha_{\parallel}-\alpha_{\perp})$  of about 2.48  $10^{-23}\,\mathrm{cm}^3$  (see Fig. 1). The similar tendency in the relation to wavelength is correct because the commonly known phenomenon usually called as the refractive dispersion characteristic for the polarisability tensor components  $\alpha_{\parallel}$  and  $\alpha_{\perp}$  is investigated. Recall, that the refractive indices of all chemical substances are dependent on the wavelength of light. This fact influences the values of polarisability anisotropy  $(\alpha_{\parallel}-\alpha_{\perp})$  and polarisability tensor components  $\alpha_{\parallel}$  and  $\alpha_{\perp}$ . Another quantity characterising the liquid crystal molecule is the order parameter  $S=(1/2)(3\cos^2\Theta-1)$ .

Having the values of the coefficient  $k_A$  for the above mentioned wavelength, one can calculate the temperature dependence of the order parameter for these wavelengths. The values of order parameter S obtained for a CB 5 liquid crystal are listed in Tables 1–3, and illustrated additionally on Figure 3. A typical relation (see Fig. 3) between the order parameter S and reduced temperature was found for all wavelengths of the light. Thus, we confirmed that the order parameter S is not dependent on the wavelength of light. The result is correct as S describes the molecular arrangement in a liquid crystal sample. This fact confirms that the theory and its equations used in this work are correct as well. The same results were

**TABLE 4** Relations of the Coefficient  $k_A$ , Polarisability Anisotropy  $(\alpha_{\parallel} - \alpha_{\perp})$  and  $\alpha_{\parallel}$ ,  $\alpha_{\perp}$  of a CB 5 Molecule and the Wavelength of the Light for Reduced Temperature Equal to  $10.3^{\circ}\mathrm{C}$ 

|                                     | ΔΤ   | w.l. 5461 Å | w.l. 5893 Å | w.1. 6328 Å |
|-------------------------------------|------|-------------|-------------|-------------|
| $k_A$                               | 10.3 | 3.0991      | 3.2097      | 3.2648      |
| $(lpha_{\parallel} - lpha_{\perp})$ | 10.3 | 42.95       | 40.95       | 40.14       |
| $\alpha_{\parallel}$                | 10.3 | 92.11       | 90.07       | 88.81       |
| $lpha_{\perp}^{''}$                 | 10.3 | 49.46       | 49.09       | 48.67       |

obtained for a CB6 liquid crystal for relations between the polarisability tensor components, the order parameter S and reduced temperature in the literature [12]. We wanted to say, in particular, that the correctness of the new relation between refractive indices and polarisability tensor  $\alpha$  was confirmed. This relation has the form  $(n^2-1)=(N\,d\,\alpha)/M^2$  and is better than the Lorenz – Lorentz equation  $(n^2 - 1)/(n^2 + 2) = (N d \alpha)/M$ . In Table 4, the relation between polarisability tensor components  $\alpha_{\parallel}$  and  $\alpha_{\perp}$ , polarisability anisotropy  $(\alpha_{\parallel} - \alpha_{\perp})$ , coefficient k<sub>A</sub>, and the wavelength of the light is illustrated. It was determined that all these quantities are dependent on the wavelength of the light. Thus, during our study of the physical properties of liquid crystal molecules the attention to the "new parameter" like the wavelength of the light should be paid. It was also found that each wavelength of the light is characterised by new values of the coefficient  $k_{\text{A}}$  as a new parameter of physical properties of a liquid crystal molecule.

#### 4. CONCLUSIONS

The main conclusions are the following:

- It was confirmed that all the quantities which are characterising the physical properties of a liquid crystal molecule, namely  $\alpha_{\parallel}$ ,  $\alpha_{\perp}$ , and  $(\alpha_{\parallel} \alpha_{\perp})$  are depended on the wavelength of the light.
- The changes of  $\alpha_{\parallel}$  or  $\alpha_{\perp}$  with the wavelength of light are not very large. It is about  $3\ 10^{-23}\,\mathrm{cm}^3$  for the change of the wavelength of the light from 6328 Å to 5461 Å which gives about 5% for  $\alpha_{\perp}=56.43\ 10^{-23}\,\mathrm{cm}^3$ . These changes are relatively large compared to the accuracy in calculation of  $\alpha_{\perp}$  which are about  $0.08\ 10^{-23}\,\mathrm{cm}^3$ .
- The investigation of the order parameter S of a CB 5 (p-cyano-p'-pentyl-biphenyl) molecule confirms that this quantity is not dependent on the wavelength of the light. The order parameter S equals

- $(\alpha_1 \alpha_2)/(\alpha_{\parallel} \alpha_{\perp})$  which means that the change of  $(\alpha_1 \alpha_1)$  of a liquid crystal molecule is proportional to the change of refractive anisotropy  $(n_e n_o)$ .
- The independence of the order parameter S on the wavelength of light proves the correctness of the theory and equations used in this calculation, in particular, the relation between refractive indices and polarisability tensor components  $\alpha_1$  and  $\alpha_2$  of the liquid crystal sample.
- It was found that the coefficient k<sub>A</sub> is a function of the wavelength of light.
- Finally, it can be mentioned that all the results, namely the dependences of the polarisability tensor components and polarisability anisotropy on the wavelength of light, are in a very good agreement with the analogous study done on CB 6 molecule [12].

#### **REFERENCES**

- Adamski, P. (1989). Hindered rotation as the cause of change in polarizability tensor scalar of mesogenic molecules. Mol. Cryst. Liq. Cryst., 17(7), 1–11.
- [2] Adamski, P. (1994). New formula combining the trace of polarizability tensor and refractive indices of a liquid crystal. Mol. Mat., 3, 257–262.
- [3] Adamski, P. (1996). The verification of correctness of Lorenz-Lorentz and Vuks equations. Sci. Bull. Tech., University of Łódź; Physics, 770(16), 5–20.
- [4] Adamski, P. (1999). Polarizability anisotropy of CB 6, CB 7, CB 8, OCB 8 liquid crystal molecules. Cryst. Res. Tech., 34(5-6), 763-768.
- [5] Neugebauer, H. E. (1954). Clausius-Mosotti equation for certain types of anisotropy crystals. J. Can. Phys., 32, 1.
- [6] Saupe, A. & Maier, W. (1961). Methoden zur bestimmung des ordnungsgrades nematischer kristallin-flussiger schichten. Z. Naturforschung, 16(a), 816–824.
- [7] Adamski, P. (1999). Polarizability anisotropy of CB n molecules. Proceedings of SPIE: Polymer and Liquid Crystals, 4017, 212–218.
- [8] Adamski, P. (2001). Light wave length and the polarizability tensor of liquid crystal molecule. 6th European Conf. on Liquid Crystals, Halle-Saale: Germany.
- [9] Karat, P. P. & Madhusudana, N. V. (1976). Elastic and optical properties of some 4'-n-alkyl-4-cyanobiphenyls. Mol. Cryst. Liq. Cryst., 36, 51-64.
- [10] Poggi, Y., Labrunie, G., & Robert, J. (1973). Physique Cristalline. Determation du parametre de ordre dans des cristaux liq-uides nematiques par des mesures de anisotropie magnetique proportionnalite entre parameter de ordre et anisotropie de indice. C. R. Acad. Sci. (Paris), B277, 561.
- [11] Valentova, O., Valenta, L., & Skala L. (1985). On the nematic-isotropic phase transition in liquid amylethoxycyanstilbene. Czech. J. Phys., B35, 734-738.
- [12] Adamski, P. (2002). Polarizability tensor of 6CB molecule and light wave length. Proceedings of SPIE-Liquid Crystals: Chemistry, Physics and Applications, 4759, 272–277.